Machine Learning Approaches for Predictive Maintenance in Internet of Things Environments
Keywords:
Predictive Maintenance, Machine Learning, Internet Of Things, Sensor Data, Fault Prediction, Industrial IotAbstract
Predictive maintenance (PdM) in Internet of Things (IoT) environments leverages continuous sensor data, real-time connectivity, and machine learning (ML) models to forecast equipment failures and optimize maintenance strategies. By replacing reactive or scheduled maintenance with data-driven predictions, industries can significantly reduce downtime, lower maintenance costs, and extend asset lifetimes. This paper presents an overview of machine learning approaches for PdM within IoT ecosystems, reviews foundational literature, describes architecture, methods, challenges and future directions. A conceptual diagram and two comparison tables illustrate key frameworks and algorithmic techniques
References
Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135-149.
Rapolu, U.K. (2024). Designing and Implementation of Azure Databricks in Cloud Environment. Journal of Artificial Intelligence, Machine Learning and Data Science, 2(4), 2236–2238. https://doi.org/10.51219/JAIMLD/upesh-kumar-rapolu/489
Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799-834.
Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple-classifier approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820.
Kumar, U. (2024). Implementing Identity and Access Management across Azure and AWS for a Global Workforce. International Journal for Multidisciplinary Research (IJFMR), 6(5), 1–9. https://doi.org/10.36948/ijfmr.2024.v06i05.38174
Bose, S. K., Kar, B., Roy, M., Gopalakrishnan, P. K., & Basu, A. (2018). ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing. arXiv preprint arXiv:1811.00873.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Rapolu, U.K. (2024). Using Microsoft Power BI for Data Visualization in SAP ERP Reporting. International Journal of Management and Organizational Research, 3(3), 63–67. https://doi.org/10.54660/IJMOR.2024.3.3.63-67
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2017). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
Khan, U., et al. (2015). A comprehensive survey on deep learning-based condition-based maintenance. ACM Computing Surveys.
Rapolu, U.K. (2024). Optimizing Cloud Costs through Serverless Computing in the Google Cloud Platform. International Journal of Scientific Research in Engineering and Management (IJSREM), 8(3), 1–4. https://doi.org/10.55041/IJSREM29683
Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., & Melodia, T. (2015). Machine learning for wireless communications in the Internet of Things: A comprehensive survey. arXiv preprint arXiv:1901.07947.
Lu, Y. (2017). Industry 4.0: A survey on technologies, applications, and open research issues. Journal of Industrial Information Integration, 6, 1-10.
Susto, G. A., Pampuri, S., Schirru, A., & McLoone, S. (2017). Machine learning methods for predictive maintenance: A review. Annals of the CIRP, 65(1), 87-90.
Rapolu, U.K. (2024). Implementing Multi-Cloud Strategies with Azure, Amazon Web Services (AWS), and Google Cloud for Enhanced Business Continuity. International Journal on Science and Technology (IJSAT), 15(2), 1–7. https://doi.org/10.71097/IJSAT.v15.i2.1647
Hashemian, H. M., & Bean, W. C. (2017). State-of-the-art predictive maintenance techniques. IEEE Transactions on Instrumentation and Measurement, 68(8), 2497-2515.
Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018). Machine learning approach for predictive maintenance in Industry 4.0. IEEE Access, 6, 62891-62906.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anton Roman (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




