Machine Learning Approaches for Predictive Maintenance in Internet of Things Environments

Authors

  • John Matthew Predictive Maintenance Engineer, United States. Author

Keywords:

Predictive Maintenance, Machine Learning, Internet Of Things, Sensor Data, Fault Prediction, Industrial Iot

Abstract

Predictive maintenance (PdM) in Internet of Things (IoT) environments leverages continuous sensor data, real-time connectivity, and machine learning (ML) models to forecast equipment failures and optimize maintenance strategies. By replacing reactive or scheduled maintenance with data-driven predictions, industries can significantly reduce downtime, lower maintenance costs, and extend asset lifetimes. This paper presents an overview of machine learning approaches for PdM within IoT ecosystems, reviews foundational literature, describes architecture, methods, challenges and future directions. A conceptual diagram and two comparison tables illustrate key frameworks and algorithmic techniques

References

Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135-149.

Rapolu, U.K. (2024). Designing and Implementation of Azure Databricks in Cloud Environment. Journal of Artificial Intelligence, Machine Learning and Data Science, 2(4), 2236–2238. https://doi.org/10.51219/JAIMLD/upesh-kumar-rapolu/489

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799-834.

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple-classifier approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820.

Kumar, U. (2024). Implementing Identity and Access Management across Azure and AWS for a Global Workforce. International Journal for Multidisciplinary Research (IJFMR), 6(5), 1–9. https://doi.org/10.36948/ijfmr.2024.v06i05.38174

Bose, S. K., Kar, B., Roy, M., Gopalakrishnan, P. K., & Basu, A. (2018). ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing. arXiv preprint arXiv:1811.00873.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Rapolu, U.K. (2024). Using Microsoft Power BI for Data Visualization in SAP ERP Reporting. International Journal of Management and Organizational Research, 3(3), 63–67. https://doi.org/10.54660/IJMOR.2024.3.3.63-67

Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2017). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.

Khan, U., et al. (2015). A comprehensive survey on deep learning-based condition-based maintenance. ACM Computing Surveys.

Rapolu, U.K. (2024). Optimizing Cloud Costs through Serverless Computing in the Google Cloud Platform. International Journal of Scientific Research in Engineering and Management (IJSREM), 8(3), 1–4. https://doi.org/10.55041/IJSREM29683

Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., & Melodia, T. (2015). Machine learning for wireless communications in the Internet of Things: A comprehensive survey. arXiv preprint arXiv:1901.07947.

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications, and open research issues. Journal of Industrial Information Integration, 6, 1-10.

Susto, G. A., Pampuri, S., Schirru, A., & McLoone, S. (2017). Machine learning methods for predictive maintenance: A review. Annals of the CIRP, 65(1), 87-90.

Rapolu, U.K. (2024). Implementing Multi-Cloud Strategies with Azure, Amazon Web Services (AWS), and Google Cloud for Enhanced Business Continuity. International Journal on Science and Technology (IJSAT), 15(2), 1–7. https://doi.org/10.71097/IJSAT.v15.i2.1647

Hashemian, H. M., & Bean, W. C. (2017). State-of-the-art predictive maintenance techniques. IEEE Transactions on Instrumentation and Measurement, 68(8), 2497-2515.

Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018). Machine learning approach for predictive maintenance in Industry 4.0. IEEE Access, 6, 62891-62906.

Downloads

Published

2025-01-22

How to Cite

John Matthew. (2025). Machine Learning Approaches for Predictive Maintenance in Internet of Things Environments. INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY RESEARCH & DEVELOPMENT, 6(1), 20-25. https://ijetrd.com/index.php/ijetrd/article/view/IJETRD.6.1.004